Abstract

We prove some sharp isoperimetric type inequalities for domains with smooth boundary on Riemannian manifolds. For example, using generalized convexity, we show that among all domains with a lower bound l for the cut distance and Ricci curvature lower bound (n−1)k, the geodesic ball of radius l in the space form of curvature k has the largest area-to-volume ratio. A similar but reversed inequality holds if we replace a lower bound on the cut distance by a lower bound of the mean curvature. As an application we show that C2 isoperimetric domains in standard space forms are balls. We also prove another isoperimetric inequality involving the extrinsic radius of a domain when the curvature of the ambient space is bounded above. We then extend it to an inequality which involves the Hausdorff measure of the cut locus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.