Abstract
By using optimal mass transport theory we prove a sharp isoperimetric inequality in $${\textsf {CD}} (0,N)$$ metric measure spaces assuming an asymptotic volume growth at infinity. Our result extends recently proven isoperimetric inequalities for normed spaces and Riemannian manifolds to a nonsmooth framework. In the case of n-dimensional Riemannian manifolds with nonnegative Ricci curvature, we outline an alternative proof of the rigidity result of Brendle (Comm Pure Appl Math 2021:13717, 2021). As applications of the isoperimetric inequality, we establish Sobolev and Rayleigh-Faber-Krahn inequalities with explicit sharp constants in Riemannian manifolds with nonnegative Ricci curvature; here we use appropriate symmetrization techniques and optimal volume non-collapsing properties. The equality cases in the latter inequalities are also characterized by stating that sufficiently smooth, nonzero extremal functions exist if and only if the Riemannian manifold is isometric to the Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.