Abstract
In this paper, we develop general repair models for a repairable system by using the idea of the virtual age process of the system. If the system has the virtual age Vn –1 = y immediately after the (n – l)th repair, the nth failure-time Xn is assumed to have the survival function where is the survival function of the failure-time of a new system. A general repair is represented as a sequence of random variables An taking a value between 0 and 1, where An denotes the degree of the nth repair. For the extremal values 0 and 1, An = 1 means a minimal repair and An= 0 a perfect repair. Two models are constructed depending on how the repair affects the virtual age process: Vn = Vn– 1+ AnXn as Model 1 and Vn = An(Vn– 1 + Xn) as Model II. Various monotonicity properties of the process with respect to stochastic orderings of general repairs are obtained. Using a result, an upper bound for E[Sn] when a general repair is used is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.