Abstract

Universal predictions of the next outcome of a binary sequence drawn from a Markov source with unknown parameters is considered. For a given source, the predictability is defined as the least attainable expected fraction of prediction errors. A lower bound is derived on the maximum rate at which the predictability is asymptotically approached uniformly over all sources in the Markov class. This bound is achieved by a simple majority predictor. For Bernoulli sources, bounds on the large deviations performance are investigated. A lower bound is derived for the probability that the fraction of errors will exceed the predictability by a prescribed amount Delta >0. This bound is achieved by the same predictor if Delta is sufficiently small. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.