Abstract

A lower bound to the rate-distortion function R(D) of finite-alphabet sources with memory is derived for the class of balanced distortion measures. For finite-state finite-alphabet Markov sources, sufficient conditions are given for the existence of a strictly positive average distortion D_c such that R(D) equals its lower bound for 0 \leqq D \leqq D_c . The bound is evaluated for the Hamming and Lee distortion measures and is identical to the corresponding bound for memoryless sources having the same entropy and alphabet. These results are applied to yield a simple proof of the converse of the noisy-channel coding theorem for sources satisfying the sufficient conditions for equality with the lower bound and channels with memory. D_c is evaluated explicitly for the special case of the binary asymmetric Markov source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.