Abstract

Asymmetry plays a significant role in the transmission dynamics in novel discrete fractional calculus. Few studies have mathematically modeled such asymmetry properties, and none have developed discrete models that incorporate different symmetry developmental stages. This paper introduces a Taylor monomial falling function and presents some properties of this function in a delta fractional model with Green’s function kernel. In the deterministic case, Green’s function will be non-negative, and this shows that the function has an upper bound for its maximum point. More precisely, in this paper, based on the properties of the Taylor monomial falling function, we investigate Lyapunov-type inequalities for a delta fractional boundary value problem of Riemann–Liouville type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.