Abstract
A plethora of antiferromagnetic structures have been so far found in condensed matter physics, where the antiferromagnetic phase transition is characterized by symmetry lowering under the magnetic point group. Depending on the types of symmetry lowering, various cross-correlation phenomena, such as the anomalous Hall effect, magneto-electric effect, and magneto-piezoelectric effect, emerge below the critical temperature. We revisit a close relationship between the symmetry of the antiferromagnetic structures and cross-correlations based on the augmented multipoles consisting of electric, magnetic, magnetic toroidal, and electric toroidal multipoles with different spatial inversion and time-reversal parities. The symmetry classification will be useful for further exploration of functional antiferromagnetic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.