Abstract

In this review paper some numerical schemes recently developed by the authors and their coworkers for analysing the cascade flows of turbomachinery are described. These schemes use the curvilinear coordinate grid and solve the momentum equations of contravariant velocities (volume flux). The compressible flow schemes are based on the delta-form approximate-factorization finite-difference scheme, and are improved by using the diagonalization, the flux difference splitting and thetvd schemes to save computational effort and to increase stability and resolvability. Furthermore, using higher-order compacttvd muscl schemes, we can capture not only shock waves but also contact surfaces very sharply. On the other hand, the incompressible flow schemes are based on the well-knownSMAC scheme, and are extended to the curvilinear coordinate grid and further to the implicit scheme to reduce computations. These schemes, like thesmac scheme, satisfy the continuity condition identically, and suppress the occurrence of spurious errors. In both the compressible and incompressible schemes, for the turbulent flow thek-ɛ turbulence model with the law of the wall or considering the low Reynolds number effects is employed, and for the unsteady flow the Crank-Nicholson method is employed and the solution at each time step is obtained by the Newton iteration. Use of the volume flux instead of the physical velocity is inevitable for theMAC type schemes, and makes it easy to impose boundary conditions. Finally, some calculated results using the present schemes are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.