Abstract
Abstract In this paper first, we prove some new generalizations of Hermite-Hadamard type inequalities for the convex function f and for (s, m)-convex function f in the second sense in conformable fractional integral forms. Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to f-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations of the earlier results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.