Abstract

<abstract> The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for $ (\eta_{1}, \eta_{2}) $-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for $ (\eta_{1}, \eta_{2}) $-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature. </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.