Abstract

Samet and Vetro [Samet B, Vetro C. Berinde mappings in orbitally complete metric spaces. Chaos Solitons Fract 2011;44:1075–9.] studied a fixed point theorem for a self-mapping satisfying a general contractive condition of integral type in orbitally complete metric spaces. In this paper, we introduce the notion of a generalized ψ-weak contraction mapping and establish some results in orbitally complete metric spaces. Our results generalize several well-known comparable results in the literature. As an application of our results we deduce the result of Samet and Vetro. Some examples are given to illustrate the useability of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.