Abstract

Some basic properties of acousto-optical (AO) diffraction involving Bessel light and acoustic beams in anisotropic crystals are investigated. Hexagonal symmetry crystals are considered and are optically uniaxial and positive and acoustically transversely isotropic. It is shown that, unlike the case of AO diffraction of plane waves, the transition to Bessel beams allows one to realize a number of new diffraction channels having specific configurations of the wave vectors of interacting waves while maintaining the axial symmetry of the optical scheme as a whole. The diffraction channels for anisotropic scattering are classified and the main parameters of the scattered Bessel light beam and the parameters of the Bessel acoustic beam are calculated for each of them. The possibility of implementing the isotropic-type diffraction was revealed, which makes it possible to increase the efficiency of AO conversion. The parameters of this-type diffraction are determined for two scattering channels, namely, for scattering by a direct Bessel acoustic beam and by a backward propagating acoustic beam.Due to the appearance of a set of scattering channels and with regard to the fact that Bessel light and acoustic beams have helical wave front dislocations, as well as suppressed diffraction spreading, the study of the features of AO diffraction of such beams in optically positive crystals has both a scientific and practical interest.

Highlights

  • possible to increase the efficiency of AO conversion

  • The parameters of this-type diffraction are determined for two scattering channels

  • 1. Formation of TH- and TE-polarized Bessel light beams at acousto- optic diffraction in anisotropic crystals / V

Read more

Summary

Introduction

Е. является плоской волной; канал 2 характерен тем, что волновой вектор БАП касается о-поверхности, а не пересекает ее; в канале 3 происходит рассеяние на развернутом БАП (угол конуса равен 90°); в канале 4 реализуется коллинеарное рассеяние на обратном БАП (здесь углы конуса трех бесселевых пучков совпадают); канал 5 соответствует дифракции на обратной плоской волне, а канал 6 аналогичен каналу 2, но для обратного БАП; для канала 7 дифрагированный о-БСП является развернутым, т. Для каналов 1–3, соответствующих дифракции на прямых бесселевых акустических пучках, можно определить минимальный угол конуса γs,min, необходимый для достижения синхронизма. Отсюда находим волновое число БАП и угол конуса дифрагированного БСП: k s = −ke cos(γ e + γ s ) ±

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call