Abstract

In this article, we introduce some new iterative schemes based on the extragradient method (and the hybrid method) for finding a common element of the set of solutions of a generalized equilibrium problem, and the set of fixed points of a family of infinitely nonexpansive mappings and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping in Hilbert spaces. We obtain some strong convergence theorems and weak convergence theorems. The results in this article generalize, improve, and unify some well-known convergence theorems in the literature.

Highlights

  • Let H be a real Hilbert space with inner product 〈.,.〉 and induced norm ||·||

  • Peng and Yao [3,4] introduced some iterative schemes for finding a common element of the set of solutions of problem (1.1), the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping and obtain both strong convergence theorems, and weak convergence theorems for the sequences generated by the corresponding processes in Hilbert spaces

  • Inspired by the ideas in [1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,22] and the references therein, we introduce some new iterative schemes based on the extragradient method for finding a common element of the set of solutions of a generalized equilibrium problem, the set of fixed points of a family of infinitely nonexpansive mappings, and the set of solutions of the variational inequality for a monotone, Lipschitz–continuous mapping without using the W-mapping generated by a family of infinitely nonexpansive mappings

Read more

Summary

Introduction

Let H be a real Hilbert space with inner product 〈.,.〉 and induced norm ||·||. Let C be a nonempty closed convex subset of H. Peng and Yao [3,4] introduced some iterative schemes for finding a common element of the set of solutions of problem (1.1), the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping and obtain both strong convergence theorems, and weak convergence theorems for the sequences generated by the corresponding processes in Hilbert spaces. 3. The main results We first show a strong convergence of an iterative algorithm based on extragradient and hybrid methods which solves the problem of finding a common element of the set of solutions of a generalized equilibrium problem, the set of fixed points of a family of infinitely nonexpansive mappings, and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping in a Hilbert space. ≤ (1 − γn)λn Aun ( tn − yn + yn − un )

It follows from b
The assumptions on gn and ln imply that bk
Cn Qn
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.