Abstract

The time-dependent Schrödinger equation with a time-dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wavefunction at the origin, one may derive the wavefunction everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the potential lead to the conservation of the normalization of the probability density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.