Abstract

The retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential is investigated in the overdamped and underdamped situations, respectively. Because of different time scales, the overdamped and underdamped Langevin equations (as well as the corresponding Fokker-Planck equations) lead to distinctive restrictions on protocols maintaining canonical distributions. Two special cases are analyzed in details: First, a Brownian particle is controlled by a time-dependent harmonic potential and embedded in medium with constant temperature; Second, a Brownian particle is controlled by a time-dependent harmonic potential and embedded in a medium whose temperature is tuned together with the potential stiffness to keep a constant effective temperature of the Brownian particle. We find that the canonical distributions are usually retainable for both the overdamped and underdamped situations in the former case. However, the canonical distributions are retainable merely for the overdamped situation in the latter case. We also investigate general time-dependent potentials beyond the harmonic form and find that the retainability of canonical distributions depends sensitively on the specific form of potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.