Abstract

We present a (mostly) rigorous approach to unbounded and bounded (open) dilute random Lorentz gases. Relying on previous rigorous results on the dilute (Boltzmann–Grad) limit we compute the asymptotics of the Lyapunov exponent in the unbounded case. For the bounded open case in a circular region we give here an incomplete rigorous analysis which gives the asymptotics for large radius of the escape rate and of the rescaled “quasi-invariant” (q.i., or “quasi-stationary”) measure. We finally give a complete proof on existence and asymptotic properties of the q.i. measure in a one-dimensional “caricature.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.