Abstract
Uffink and Valente (Found Phys 45:404–438, 2015) claim that there is no time-asymmetric ingredient that, added to the Hamiltonian equations of motion, allows to obtain the Boltzmann equation within the Lanford’s derivation. This paper is a discussion and a reply to that analysis. More specifically, I focus on two mathematical tools used in this derivation, viz. the Boltzmann–Grad (B–G) limit and the incoming configurations. Although none of them are time-asymmetric ingredients, by themselves, I claim that the use of incoming configurations, as taken within the B–G limit, is such a time-asymmetric ingredient. Accordingly, this leads to reconsider a kind of Stoszahlansatz within Lanford’s derivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.