Abstract

This article throws light on details of jet engine thrust. The momentum flux of the engine exiting flow is greater than that which entered, brought about by the addition of the energy input from combusted fuel, and giving rise to engine thrust. Thrust arises from pressure and frictional forces on these surfaces, e.g., blades, vanes, endwalls, ducts, etc. This interior force view of thrust is easy to visualize but quite another thing to actually measure. In doing research on secondary flow in gas turbine passages, researchers have measured both steady-state momentum changes and surface forces, in the much simpler case of a turbine blade cascade. The thrust values for each component in the Rolls-Royce single spool engine have been shown in this paper. It has been noted that from the compressor, gas path flow enters the engine case diffuser, where a pressure gain produces another component of forward thrust of 2,186 lbt. Newton’s second law of motion allows us to examine engine component behavior that exhibits both forward and rearward propelling forces, which results in the net thrust our airline passengers have purchased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call