Abstract
Stainless-steel has proven to be a first-class material with unique mechanical properties for a variety of applications in the building and construction industry. High ductility, strain hardening, durability and aesthetic appeal are only a few of them. From a specific point of view, its nonlinear stress–strain behaviour appears capable of providing a significant increase in the rotational capacity of stainless-steel connections. This, in turn, may provide significant benefits for the overall response of a structure in terms of capacity and ductility. However, the bulk of the research on stainless-steel that has been published so far has mostly ignored the analysis of the deformation capabilities of the stainless-steel connections and has mostly focused on the structural response of individual members, such as beams or columns. For such a reason, the present study aims to contribute to the general understanding of the behaviour of stainless-steel connections from a conceptual, numerical and design standpoint. After a brief review of the available literature, the influence of the use of stainless-steel for column–beam connections is discussed from a theoretical standpoint. As a novel contribution, a different approach to compute the pseudo-plastic moment resistance that takes into account the post-elastic secant stiffness of the stainless-steel is proposed. Successively, a refined finite element model is employed to study the failure of stainless-steel column–beam connections. Finally, a critical assessment of the employment of carbon-steel-based design guidelines for stainless-steel connections provided by the Eurocode 3 design (EN 1993-1-8) is performed. The findings prove the need for the development of novel design approaches and more precise capacity models capable of capturing the actual stainless-steel joint response and their impact on the overall ductility and capacity of the whole structure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have