Abstract
EEG-based motor imagery signal classification is very important in brain-computer interface (BCI) technology. In this work, we develop a common spatial pattern (CSP) technique for feature extraction in a BCI system. To confirm classification improvement, classification accuracy was analysed by using four statistics, namely mean, variance, skewness, and kurtosis within the CSP paradigm. The data from the dataset III of BCI competition II were used and simulated using MATLAB. The results show that the best classification accuracy is obtained when the CSP algorithm uses the variance statistic for feature extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Telemedicine and Clinical Practices
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.