Abstract

Common spatial pattern (CSP) algorithm and principal component analysis (PCA) are two commonly used key techniques for EEG component selection and EEG feature extraction for EEG-based brain-computer interfaces (BCIs). However, both the ordinary CSP and PCA algorithms face a loading problem, i.e., their weights in linear combinations are non-zero. This problem makes a BCI system easy to be over-fitted during training process, because not all of the information from EEG data are relevant to the given tasks. To deal with the loading problem, this paper proposes a spare CSP algorithm and introduces a sparse PCA algorithm to BCIs. The performance of BCIs using the proposed sparse CSP and sparse PCA techniques is evaluated on a motor imagery classification task and a vigilance estimation task. Experimental results demonstrate that the BCI system with sparse PCA and sparse CSP techniques are superior to that using the ordinary PCA and CSP algorithms.Keywordssparse common spatial patternsparse principal component analysisEEGbrain-computer interface

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call