Abstract

Abstract Two-dimensional plane-strain numerical experiments illustrate the effects of variable evaporite viscosity and embedded frictional-plastic sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity exerts a first-order control on the salt flow rate and the style of overburden deformation. Nearly complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers with yield strength partition salt flow and develop transient contractional structures (folds, thrust faults and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the seaward salt flow during sediment aggradation, leaving more salt behind to be remobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers fractionate during deformation and either float to the surface or sink to the bottom, creating a thick zone of pure halite. Such a process of ‘buoyancy fractionation’ may partially explain the apparent paradox of layered salt in autochthonous salt basins and pure halite in allochthonous salt sheets. Supplementary material: Animated gif files of the model results are available at http://www.geolsoc.org.uk/SUP18500 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.