Abstract

Linear control systems are studied by means of a state-space approach. Feedback morphisms are presented as natural generalization of feedback equivalences. The set of feedback morphisms between two linear systems is a vector space. Kernels, cokernels, as well as monomorphisms, epimorphisms, sections, and retracts of feedback morphisms are studied in the category of linear systems over finite dimensional vector spaces. Finally, a classical Kalman’s decomposition of linear systems over vector spaces is presented as a split short exact sequence in the category.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.