Abstract
The details of the temperature dependent intensity and linewidth of zero-phonon bands in molecular crystal absorption and emission spectra are considered in relation to the line shape functions observed in thermal modulation spectra. Theory suggests and experiment confirms that in the limit of the Condon and adiabatic approximations for linear electron–phonon coupling, the extraordinary temperature dependence of zero-phonon bands may be utilized to separate them from diffuse background absorption or emission. Qualitative consideration of line broadening from quadratic electron–phonon coupling utilizing a configuration coordinate model suggests that even when these terms dominate the linear interaction, increased resolution may be obtained in a thermal modulation spectrum. The theoretical considerations are illustrated with several experimental examples and some applications of the technique are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.