Abstract

Numerical solutions of the blast wave flow from a spherical explosive charge were obtained using the artificial viscosity technique as employed by Oppenheim. The flow is treated as adiabatic and inviscid and ideal equations of state are used for reactants, products and the surrounding air environment. Differences are noted in the peak pressure, static impulse and dynamic impulse resulting from three representative types of idealized initiation: (1) centrally initiated, self-similar Chapman-Jouguet detonation, (2) edge initiated spherical implosion and (3) constant volume energy release followed by sudden venting to the environment. These are compared to the ideal point blast with counterpressure of the same total energy release. In addition, numerical solutions are presented for centrally initiated, stoichiometric hydrogen-oxygen mixtures surrounded by air for detonation and for deflagration according to an empirically determined, non-steady flame velocity. The greater energy transfer to the environment in the case of detonation is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.