Abstract
The work is devoted to the study of laser shock treatment of structural materials used in aviation and space technology with powerful nanosecond pulses in order to reduce surface damage, as well as resistance to crack growth. The hardening effect is achieved due to the mechanical deformation produced by the shock wave from the laser pulse due to the rapidly expanding plasma in the area of the irradiation spot. In this work, laser parameters for processing structural materials are calculated to ensure the required laser radiation power density. The results of laser processing with high-power nanosecond pulses of materials such as oxygen-free copper, aluminum alloy and germanium at various energy densities, with and without a protective coating and a water layer are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.