Abstract

Fine-scale somatotopic encoding in brain areas devoted to sensorimotor processing has recently been questioned by functional neuroimaging studies which suggested its absence within the hand area of the human primary motor cortex. We re-examined this issue by addressing somatotopy both in terms of functional segregation and of cortical response preference using oxygenation-sensitive magnetic resonance imaging at high spatial resolution. In a first step, spatial representations of self-paced isolated finger movements were mapped by using motor rest as a control state. A subsequent experimental design studied the predominance of individual finger movements by using contrasting finger movements as the control task. While the first approach confirmed previous reports of extensive overlap in spatial representations, the second approach revealed foci of differential activation which displayed an orderly mediolateral progression in accordance with the classical cortical motor homunculus. We conclude that somatotopy within the hand area of the primary motor cortex does not present as qualitative functional segregation but as quantitative predominance of certain movement or digit representation embedded in an overall joint hand area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.