Abstract

Somatostatin receptor (SSTR) agonist-based Positron Emission Tomography-Computed Tomography (PET-CT) imaging is nowadays the mainstay for the assessment and diagnostic imaging of neuroendocrine neoplasms (NEN), especially in well-differentiated neuroendocrine tumors (NET) (World Health Organization (WHO) grade I and II). Major clinical indications for SSTR imaging are primary staging and metastatic workup, especially (a) before surgery, (b) detection of unknown primary in metastatic NET, (c) patient selection for theranostics and appropriate therapy, especially peptide receptor radionuclide therapy (PRRT), while less major indications include treatment response evaluation on and disease prognostication. Dual tracer PET-CT imaging using SSTR targeted PET tracers, viz. [68Ga]Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) and [68Ga]Ga-DOTA-NaI3-Octreotide (DOTA-NOC), and fluorodeoxyglucose (FDG), have recently gained widespread acceptance for better assessment of whole-body tumor biology compared to single-site histopathology, in terms of being non-invasive and the ability to assess inter- and intra-tumoral heterogeneity on a global scale. FDG uptake has been identified as independent adverse risk factor in various studies. Recently, somatostatin receptor antagonists have been shown to be more sensitive and specific in detecting the disease. The aim of this review article is to summarize the clinical importance of SSTR-based imaging in the clinical management of neuroendocrine and related tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call