Abstract

To examine somatosensory mechanisms contributing to the perception of roughness, subjects examined surfaces with rigorously specified spatial textures under conditions of direct moving contact between the fingertip and the surface (direct touch) and contact through a rigid probe (indirect touch). Subjects were trained to scan the surfaces along a consistent path and with a speed of 2.7 cm/s. With each mode of touch, periods of prolonged inspection of a single adapting surface were followed by shorter periods in which the roughness of multiple test surfaces was reported. Adaptation caused a drop in perceived roughness under conditions of indirect touch, reflecting the reduced sensitivity of vibrotactile mechanisms that are the main recipients of textural information transmitted through the probe. During direct touch, adaptation had no significant effect on the perception of textures with spatial period >200 mum, which are spatially encoded. The results have an important implication for the physiological basis of the spatial code, which is believed to involve somatosensory cortical neurons with highly structured receptive fields: these cortical populations appear to be less susceptible to adaptation than otherwise similar neuronal populations in the visual system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call