Abstract

The aim was to investigate whether on-line somatic cell count (SCC) assessment, when combined with electrical conductivity (EC), should be implemented at the udder quarter or at the cow level. Data were collected from 3 farms with automatic milking systems, resulting in 3,191 quarter milkings used in the analyses. Visual observations of foremilk and quarter milk samples for laboratory SCC analysis were used to define 2 gold standards. One was based on visual observation only and the other was based on a combination of visual observation and SCC (using a reference value of 500,000 cells/mL), which means that a quarter milking must have visually abnormal milk as well as an increased SCC to be categorized positive. On-line SCC assessment took place at the quarter level during the first part of the milking. Composite cow level samples were used for laboratory SCC analysis and to compare the performance of SCC assessment at quarter and cow levels. The EC at the quarter level was measured by in-line sensors of the automatic milking system. Alerts for SCC indicators were calculated based on straightforward reference values. Alerts for EC were based on straightforward reference values, or on interquarter ratios. The latter was calculated by dividing the value of a given quarter by the average value of the 2 lowest quarters of that milking. The EC and SCC indicators were combined with either a Boolean “and” or “or” function. Receiver operating characteristic curves were used to visually present results using different threshold values. Sensitivity, specificity, and success rate at the quarter level and false alert rate per 1,000 cow milkings were used to compare indicators at given sensitivity or specificity levels. Quarter level SCC assessment was superior to cow level assessment (transformed partial area under the curve=0.70 vs. 0.62) when combined with EC measurement at quarter level. When aiming for the same sensitivity level (e.g., 50%) with all visual abnormal milk as the gold standard, more false alerts were generated with cow level assessment (137 per 1,000 cow milkings) compared with quarter level SCC assessment (75 per 1,000 cow milkings). As a comparison, using EC alone resulted in 292 false alerts per 1,000 cow milkings in the same situation. Therefore, it is concluded that quarter level SCC assessment was superior to cow level assessment when combined with EC measurement at quarter level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call