Abstract

Metal-organic frameworks (MOFs), which contain reactive metal clusters and organic ligands allowing for large porosities and surface areas, have proven effective in gas adsorption, separations, and catalysis. MOFs are most commonly synthesized as bulk powder, requiring additional processes to adhere them to functional devices and fabrics that risk decreasing the powder porosity and adsorption capacity. Here, we demonstrate a method of first coating fabrics with metal oxide films using atomic layer deposition (ALD). This process creates conformal films of controllable thickness on each fiber, while providing a more reactive surface for MOF nucleation. By submerging the ALD coated fabric in solution during solvothermal MOF synthesis, the MOFs create a conformal, well-adhered coating on the fibers, resulting in a MOF-functionalized fabric, without additional adhesion materials that may block MOF pores and functional sites. Here we demonstrate two solvothermal synthesis methods. First, we form a MIL-96(Al) layer on polypropylene fibers using synthetic conditions that convert the metal oxide to MOF. Using initial inorganic films of varying thicknesses, diffusion of the organic linker into the inorganic allows us to control the extent of MOF loading on the fabric. Second, we perform a solvothermal synthesis of UiO-66-NH2 in which the MOF nucleates on the conformal metal oxide coating on polyamide-6 (PA-6) fibers, thereby producing a uniform and conformal thin film of MOF on the fabric. The resulting materials can be directly incorporated into filter devices or protective clothing and eliminate the maladroit qualities of loose powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call