Abstract

Photocatalytic fuel cell (PFC) provides a new method to degrade organic pollutants and recover their energy simultaneously. In this work, a novel flower-like hierarchical photoanode (PANI/Bi2Sn2O7/BiOBr/Ti) was synthesized by solvothermal method and assembled with Cu cathode to form a PFC for rhodamine B (RhB) degradation and simultaneous power generation. The crystal structure, chemical composition, and morphology of the photoanode was characterized by a variety of analysis techniques. The photocatalytic activity of the ternary hierarchical composite photoanode was superior to that of single and binary composite photoanodes. Its maximum photocurrent density, maximum power density, degradation rate and FF were 0.241mA·cm-2, 21.52μW·cm-2, 92.97% (90min) and 0.18, respectively. In addition, it still maintains high photocatalytic activity after five consecutive uses. Based on the analysis results of transient photocurrent (i-t), EIS, DRS spectrum, M-S curve and free radical capture experiments, the improvement of photocatalytic performance of PANI/Bi2Sn2O7/BiOBr/Ti photoanode is attributed to the formation of dual Z-scheme heterojunction between PANI and BiOBr and between Bi2Sn2O7 and BiOBr, which realizes the rapid separation and transfer of electron-hole pairs, and retains the strong oxidation of holes in VB of BiOBr and the strong reduction of electrons in LUMO of PANI and CB of Bi2Sn2O7. This study provides a new research idea for the design and construction of high efficiency photoanode in PFC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.