Abstract

The folding behavior of five different amine-functionalized m-poly(phenyleneethynylene) (m-PPE) oligomers containing 24 phenyl rings (12 residues, where a residue includes 2 phenyl rings) in water was examined by using a combination of molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulation techniques. The REMD method employed the highly parallelized GROMACS MD software and a modified OPLS-AA force field to simulate 44 replicas of each solvated system in parallel, with temperatures ranging from 300 to 577 K. Our results showed that the REMD method was more effective in predicting the helical conformation of the m-PPE in water, from an extended structure, than canonical MD methods in the same simulation time. Furthermore, we observed from canonical MD simulations of the explicitly solvated helical m-PPEs at 300 K that the radius of gyration, average helix inner diameter, and average helix pitch of the helical structure all pass through a minima when the side group is R = OC(2)H(5) as R is changed from R = H through OC(4)H(9).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call