Abstract

<p>A direct spectrofluorimetric method for the quantitative analysis of benomyl in natural waters is described. Benomyl is an instable, fluorescent fungicide that mainly decomposes into carbendazim and n-butyl-isocyanate in organic and aqueous solutions. The kinetics of benomyl solvolysis reactions were investigated in organic solvents (methanol and acetonitrile) and in aqueous solvent systems, including β–cyclodextrin (β-CD), sodium dodecyl sulfate (SDS), dodecyltrimethylammonium chloride (DTAC), cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium hydroxide (CTAOH), Brij-700, Triton X-100 and water, at different pH and/or NaOH concentrations. The benomyl fluorescence signal was found to be quasi-completely stable in 10<sup>-2</sup> M NaOH aqueous solution, various alkaline (10<sup>-2</sup> M NaOH) organized media, β-CD neutral solution and Triton X-100 aqueous solutions of different pH. Based on these results, a direct spectrofluorimetric analytical method was developed for the determination of benomyl in 10<sup>-2</sup> M NaOH aqueous solution and Triton X-100 solutions (pH7 and 10<sup>-2</sup> M NaOH), with wide linear dynamic range (LDR) values of two to three orders of magnitude, very low limit of detection (LOD) and limit of quantification (LOQ) values of, respectively, 0.002-0.5 ng/mL and 0.007-2.0 ng/mL, and small relative standard deviation (RSD) values of 0.2-1.7 %, according to the medium. This direct spectrofluorimetric method was applied to the evaluation of benomyl residues in natural waters, with satisfactory recovery values (87-94%).</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call