Abstract

A series of mononuclear Cu(II) complexes were synthesized using a potential tetradentate hydrazone ligand obtained from the reaction between phenylhydrazine groups and 2,5-thiophenedicarboxaldehyde. The structures of ligands and complexes were elucidated through various spectroscopic techniques, confirming their composition. All complexes were found to adopt four-coordinated geometries, indicating the formation of stable structures. Spectroscopic analysis revealed that the hydrazone ligand coordinated with the Cu(II) metal ions as a dibasic tetradentate ligand by utilizing the phenolic oxygen and azomethine nitrogen atoms. The binding affinity of the complexes with calf thymus DNA (CT-DNA) was investigated using absorption and viscosity measurements, demonstrating their interaction through the intercalation mode. The binding studies showed that the Cu(II) complexes exhibited varying degrees of binding affinity, with Cu(L4) demonstrating the highest affinity, followed by Cu(L1), Cu(L2), and Cu(L3). Moreover, the DNA fragmentation properties of the Cu(II) complexes were evaluated, suggesting their potential utilization in pharmaceutical applications. The obtained results highlight the significance of these novel complexes in the field of medicinal chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.