Abstract
Variational inequalities with linear inequality constraints are widely used in constrained optimization and engineering problems. By extending a new recurrent neural network [14], this paper presents a recurrent neural network for solving variational inequalities with general linear constraints in real time. The proposed neural network has one-layer projection structure and is amenable to parallel implementation. As a special case, the proposed neural network can include two existing recurrent neural networks for solving convex optimization problems and monotone variational inequality problems with box constraints, respectively. The proposed neural network is stable in the sense of Lyapunov and globally convergent to the solution under a monotone condition of the nonlinear mapping without the Lipschitz condition. Illustrative examples show that the proposed neural network is effective for solving this class of variational inequality problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.