Abstract

In this work, a new hybrid conjugate gradient (CG) algorithm is developed for finding solutions to unconstrained optimization problems. The search direction of the algorithm consists of a combination of conjugate descent (CD) and Dai–Yuan (DY) CG parameters. The search direction is also close to the direction of the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton algorithm. Moreover, the search direction is bounded and satisfies the descent condition independent of the line search. The global convergence of the algorithm under the Wolfe-type is proved with the help of some proper assumptions. Numerical experiments on some benchmark test problems are reported to show the efficiency of the new algorithm compared with other existing schemes. Finally, application of the algorithm in risk optimization completes the work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.