Abstract
In this article, we propose a hybrid conjugate gradient (CG) scheme for solving unconstrained optimization problem. The search direction is a combination of the Polak–Ribière–Polyak (PRP) and the Liu–Storey (LS) CG parameters and is close to the direction of the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton scheme. Without the use of the line search, the search direction satisfies the descent condition and possesses the trust region property. The global convergence of the scheme for general functions under the Wolfe-type and Armijo-type line search is established. Numerical experiments are carried out on some benchmark test problems and the results show that the propose scheme is more efficient than other existing schemes. Finally, a practical application of the scheme in motion control of robot manipulator is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.