Abstract

This study proposes a novel and dexterous local search scheme for improving the exploitation phase of a generic metaheuristic algorithm. The proposed local search considers a twofold probing mechanism, which takes advantage of a chaotic number generated by the hybrid chaotic map composed of Logistic map and Kent map to move around the so-far-obtained global best solutions to reach feasible candidate solutions. Also, an iterative local search scheme inspired by a variant of the differential evolution algorithm is incorporated into the proposed manipulation scheme to enhance intensification on the promising regions. The proposed scheme is included in the well-reputed metaheuristics of differential evolution, crow search, whale optimization, and sine–cosine algorithms to assess the resulting improvements made on the optimization accuracy. Forty optimization benchmark functions composed of unimodal and multimodal test problems have been solved by the local search improved and basic forms of these optimizers to identify the amelioration in terms of solution accuracy and robustness. Two different real-world constrained optimization problems have been solved by these algorithms to analyze the improvement in solution qualities maintained by the utilization of the proposed local search method. Furthermore, these mentioned optimization algorithms along with their improved forms have been applied to one-dimensional transient heat conduction problems to obtain accurate temperature distribution across the heat transfer medium. Optimization results reveal that utilizing local search enhanced metaheuristic algorithms can be considered a favorable alternative to conventional solution methods for solving transient heat conduction problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call