Abstract
Heat transfer optimization principle is critically important for further explaining the underlying mechanisms and guiding practical designs of heat transfer processes. Recently, the entransy theory has been successfully used to optimize various steady-state heat transfer processes. Nevertheless, it is still an open question whether this theory can be utilized in transient cases. Here, we examined the applicability of the entransy analyses on the one-dimensional transient heat conduction process. It was found that the entransy dissipation rate can neither derive the transient governing equation nor correspond to the optimal result in the transient optimization problem. Therefore, an extended entransy dissipation rate was defined as the convolution integral of heat flux and negative temperature gradient. The total extended entransy dissipation rate over the time and space domain can correspond to the optimal result of the transient optimization problem. Additionally, Fourier transform was used to convert the transient problem from the time domain into the frequency domain, and the total entransy dissipation rate in the frequency domain will give a convenient optimization criterion that the temperature gradient field should be spatially uniform to reach the shortest characteristic time. Also, the inverse Fourier transform of the entransy dissipation rate in the frequency will be the extended entransy dissipation rate in the time domain. Finally, these findings were used to optimize a practical transient heat conduction problem for a solid thermal energy storage unit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.