Abstract

The approximate minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming methods. When the number of variables is large, the most widely used strategy is to trace the path of conjugate gradient iterates either to convergence or until it reaches the trust-region boundary. In this paper, we investigate ways of continuing the process once the boundary has been encountered. The key is to observe that the trust-region problem within the currently generated Krylov subspace has a very special structure which enables it to be solved very efficiently. We compare the new strategy with existing methods. The resulting software package is available as HSL_VF05 within the Harwell Subroutine Library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.