Abstract

The trust region problem, minimization of a quadratic function subject to a spherical trust region constraint, occurs in many optimization algorithms. In a previous paper, the authors introduced an inexpensive approximate solution technique for this problem that involves the solution of a two-dimensional trust region problem. They showed that using this approximation in an unconstrained optimization algorithm leads to the same theoretical global and local convergence properties as are obtained using the exact solution to the trust region problem. This paper reports computational results showing that the two-dimensional minimization approach gives nearly optimal reductions in then-dimension quadratic model over a wide range of test cases. We also show that there is very little difference, in efficiency and reliability, between using the approximate or exact trust region step in solving standard test problems for unconstrained optimization. These results may encourage the application of similar approximate trust region techniques in other contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.