Abstract

The Legendre transform expresses dynamics of a classical system through first-order Hamiltonian equations. We consider coherent state transforms with a similar effect in quantum mechanics: they reduce certain quantum Hamiltonians to first-order partial differential operators. Therefore, the respective dynamics can be explicitly solved through a flow of points in extensions of the phase space. This generalises the geometric dynamics of a harmonic oscillator in the Fock space. We describe all Hamiltonians which are geometrised (in the above sense) by Gaussian and Airy beams and write down explicit solutions for such systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.