Abstract
The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density [1, 2, 3, 4, 5, 6]. A recent note by R. J. Briggs [7] suggests that a ''sheath helix'' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from ''first principles'' without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author [8]. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.