Abstract

The paper provides mathematical formalization and a method of solving the problem of minimax (guaranteed) closed-loop terminal control of fuel consumption of a liquid-propellant launch vehicle power plant. The initial discrete-continuous nonlinear model of the controlled object is linearized along the given reference phase path and is approximated by a linear discrete-time multistep dynamical system. The approximated system includes the state vector, the control vector and the disturbance vector that defines the error of formation of the approximated model. Taking into account the geometrical constrains of control and disturbance vectors in the approximated system, we formulate the main problem of minimax closed-loop terminal control of propellant consumption of the launch vehicles propulsion system. This problem consists in solving a number of auxiliary tasks of minimax open-loop terminal control. To solve each of these tasks we use an instrument of development and analysis of generalized attainability domains of the approximated linear discrete dynamical system. These techniques are implemented by modifying the general recurrent algebraic method. To solve the problems under consideration we propose an approach and an appropriate numerical algorithm that is reduced to the implementation of a finite sequence of only one-step algebraic and optimization operations. The efficiency of the proposed approach to solving the problem under consideration is demonstrated and verified by a computer simulation example. This simulation example consists in controlling the process of propellant consumption for Soyuz-2.1b launch vehicles third stage propulsion system.

Highlights

  • Математическая модель расхода топлива ДУ ЖРНГде c0 – известный коэффициент привода дросселя

  • Одной из основных задач, решаемых системой управления отечественных ЖРН, является задача оптимизации терминального управления расходом топлива

  • Задача оптимизации управления расходом топлива ДУ ЖРН сформулирована как задача минимаксного адаптивного терминального управления линейной дискретной динамической системой с выпуклым функционалом качества

Read more

Summary

Математическая модель расхода топлива ДУ ЖРН

Где c0 – известный коэффициент привода дросселя. Что значение угла поворота дросселя th при t , t 1 , t 0,T 1 имеет фиксированное значение (не изменяется). Где K – номинальное значение коэффициента соотношения расходов компонентов топлива; K – известный параметр выставки дросселя в номинальное положение; c1 – коэффициент эффективности дросселя

Выражение для вычисления пустотной тяги ДУ ЖРН имеет вид
Здесь u
Постановка задачи минимаксного адаптивного управления
Модельный пример
Упрощённая модель
Библиографический список

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.