Abstract
The article presents the results of the development of means for intelligent robust control of the parameters of a tribotronic rotor-support system with a tapered bearing with a removable bush. The proposed controller is implemented on the basis of deep Q-network reinforcement learning (DQN) synthesized on the basis of a numerical model of a rotor support system. The control strategy involved simultaneous control of the shaft position and friction in the lubrication layer. Methods for control synthesis are presented for both a deterministic system and a system with stochastic parameters. In the latter case, a controller synthesis technique is proposed that takes into account uncertainties in the system at the training stage. Testing of the resulting controllers shows the better ability of a controller trained to take into account uncertainties to cope with variable loads, as well as predict possible changes in the system and proactively transfer the system to more advantageous states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: VESTNIK of Samara University. Aerospace and Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.