Abstract

In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with three-dimensional loading constraints (3L-PDP). We are given a set of requests and a homogeneous fleet of vehicles. A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as set of rectangular boxes and the vehicle capacity is replaced by a 3D loading space.This paper is the second one in a series of articles on 3L-PDP. As in the first paper we are dealing with constraints which guarantee that no reloading effort will occur. Here the focus is laid on the reloading ban, a packing constraint that ensures identical placements of same boxes in different packing plans. The reloading ban allows for better solutions in terms of travel distance than a routing constraint that was used in the first paper to preclude any reloading effort. To implement this packing constraint a new type of packing procedure is needed that is capable to generate a series of interrelated packing plans per route. This packing procedure, designed as tree search algorithm, and the corresponding concept of packing checks is the main contribution of the paper at hand. The packing procedure and a large neighborhood search procedure for routing form a hybrid algorithm for the 3L-PDP. Computational experiments were performed using 54 3L-PDP benchmark instances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call