Abstract

This study proposes a concise and generalized robust goal programming (RGP) model that simultaneously considers three types of goal functions – right-side penalties, left-side penalties, and both-side penalties – under uncertainties on both the left-hand side and right-hand side. It integrates common uncertainty sets for a comprehensive goal programming model. Experimental results reveal that our model consistently outperforms existing RGP models by incurring fewer penalties, demonstrating enhanced resilience and robustness. This advantage becomes evident when problem coefficients such as costs, profits, and human resource requirements deviate significantly from their default target levels due to real-world conditions. The proposed model not only extends the robustness of traditional goal programming and weighted fuzzy goal programming but also offers improved risk management across various practical scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.