Abstract

In this article, a hybrid metaheuristic method for solving the open shop scheduling problem (OSSP) is proposed. The optimization criterion is the minimization of makespan and the solution method consists of four components: a randomized initial population generation, a heuristic solution included in the initial population acquired by a Nawaz-Enscore-Ham (NEH)-based heuristic for the flow shop scheduling problem, and two interconnected metaheuristic algorithms: a variable neighborhood search and a genetic algorithm. To our knowledge, this is the first hybrid application of genetic algorithm (GA) and variable neighborhood search (VNS) for the open shop scheduling problem. Computational experiments on benchmark data sets demonstrate that the proposed hybrid metaheuristic reaches a high quality solution in short computational times. Moreover, 12 new hard, large-scale open shop benchmark instances are proposed that simulate realistic industrial cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.