Abstract
This article presents a new variant for the open shop scheduling problem, the open shop scheduling problem with repetitions (OSSPR), where the jobs can be processed on any machine more than once (operation by operation). Thereby, all the jobs can be scheduled in an unconstrained way, substantially increasing the number of feasible solutions in comparison with the classical open shop. The OSSPR has many applications in automotive and maintenance actives. To solve the problem, a mixed-integer linear programming model is presented and a new constraint programming model is proposed. Since the problem under study is NP-hard, a new efficient variable neighbourhood search is proposed using variable search strategies through the proposed constraint programming model. The objective function is makespan minimization, and it uses the lower bound deviation as performance criterion. Computational results show very good performance of the proposed metaheuristic on the instances tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.